14/06/2020

14/06/2020

Content							
1.	Introduction						
2.	Cognition: why engineers bother; first theoretical and experimental results						
3.	Major conclusions – infinitesimality and c-goodness						
4.	Scope and implementation media for cognition						
5.	Cognition and cognitive endeavors						
6.	MCS cognition theory for natural cognition, for balancing rationality versus rivals						
7.	Cognition in the context of action and emotion, humans and societies, agents and groups						
8.	Conclusion						
10-11 De	cc. 2015 JD. Dessimoz, HESSO.HEIG-VD, 2 nd Int. Conf. on Natural Cognition 16						

4. Scope and implementation media for cognition 1 of 2

- The model for cognitive sciences that we have proposed («MCS » cognition theory) introduces a « cognitive agent » regardless of scale and nature of implementation medium.
- In MCS cognition theory, cognitive properties can be defined and quantitatively estimated as well for the typical case of a singular agent, as eventually also for cases of different scope: any subunit, elementary component of the latter singular agent; or reciprocally, any possible (« macro/meta »,) integral structure of multiple such agents.
- This also means that MSC can be applied in just the same way for an electronic gate, a digital circuit, a computer or a network, as for neurons, brains, humans, or a group (re. family, society, association, H-R team, etc.). Idem for cognitive processes : e.g. thinking, group deliberation, digital computation, or network-based operation (e.g. search)

10-11 Dec. 2015 J.-D. Dessimoz, HESSO.HEIG-VD, 2nd Int. Conf. on Natural Cognition

6. MCS cognition theory for natural cognition, for balancing rationality versus rivals 3 of 7									
• About "nature" 3 – biological/human, versus man-made/machine- based. Examples of domain-related synonyms, in current context:									
Man-made, "artificial 2" *	Neutral, "universal"	"Natural", anthropomorphical							
machine	agent	human; re. life							
gripper, end-effector, net, magnet	grasping agent	hand; re. prehension							
camera, Hubble, MRI	perceptive agent	eye; re. visual sense							
kinematic chain	kinematic agent	arm, leg, limb; re. motion							
motor/engine	effector	muscle; re. action							
computer, electronics, networks	cognitive engine	brain; re. cognition							
status interface, alarm center, monitoring systems	emotive/emotional agent (re arousal, valence, stance)	heart; re. emotions							
systems	group	society, corporation, holding, federation, family							
components, subunits	subsystems	brain regions; neurons; shareholders, members							
cathedral, skyscraper	shelter	cave, tree							
* "Artificial 1" implies not real (e.g. "sugar" may be flour); "artificial 2" means man-made, yet real (sugar, is sugar)									
10-11 Dec. 2015JD. Dessimoz, HESSO.HEIG-VD, 2 nd Int. Conf. on Natural Cognition24									

- 1. Introduction
- 2. Cognition: why engineers bother; first theoretical and experimental results
- 3. Major conclusions infinitesimality and c-goodness
- 4. Scope and implementation media for cognition
- 5. Cognition and cognitive endeavors
- 6. MCS cognition theory for natural cognition, for balancing rationality versus rivals
- 7. Cognition in the context of action and emotion, humans and societies, agents and groups

8. Conclusion

10-11 Dec. 2015

J.-D. Dessimoz, HESSO.HEIG-VD, 2nd Int. Conf. on Natural Cognition

- 1. Introduction
- 2. Cognition: why engineers bother; first theoretical and experimental results
- 3. Major conclusions infinitesimality and c-goodness
- 4. Scope and implementation media for cognition
- 5. Cognition and cognitive endeavors
- 6. MCS cognition theory for natural cognition, for balancing rationality versus rivals
- 7. Cognition in the context of action and emotion, humans and societies, agents and groups
- 8. Conclusion

10-11 Dec. 2015 J.-D. Dessimoz, HESSO.HEIG-VD, 2nd Int. Conf. on Natural Cognition

ACKNOWLEDGMENT

A particular mention of Pierre-François Gauthey for his contribution to many figures of this presentation; the author also gratefully acknowledges the support of numerous partners, government agencies and sponsors that made this research and associated publications possible; acknowledgements as well for some foundations to early education contributors.

10-11 Dec. 2015

J.-D. Dessimoz, HESSO.HEIG-VD, 2nd Int. Conf. on Natural Cognition

A. Pr	obabilit	y, Loga	arithm &	Informa	tion
			<u> </u>		
• Logari	thm: countin	ig zeroes ii	n a number; le	eft or right.	
		Ν	Log		
		1'000'000	6		
		10	1		
		1	0		
		0.1	-1		
		0.000'000'1	-6		
• Probab	<mark>oility</mark> : ratio o	f success	to trial; "char	ice"	
	Possibilities	%; 0100	Probability, P; 01	1/P ; 1∞	
	1 in 1'000'000	0.000'01%	0.000'000'1	1'000'000	
	1 in 20	5%	0.05	20	
	1 in 10	10%	0.1	10	
	900 in 1000	90%	0.9	1.11	
	1000 in 1000	100%	1	1	
• Inform	<mark>ation</mark> quanti	ty: logarith	nm of inverse	of probabilit	у [4]
10-11 Dec. 2015	JD. D.	essimoz, HESSO.HEIG	G-VD, 2 nd Int. Conf. on Nat	ural Cognition	40

